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Abstract. A bacterial cell must distribute its molecular building blocks among various types
of nutrient uptake systems. If the microbe is to maximize its average growth rate, this allo-
cation of building blocks must be adjusted to the environmental availabilities of the various
nutrients. The adjustments can be found from growth balancing considerations. We give a
full proof of optimality and uniqueness of the optimal allocation regime for a simple model
of microbial growth and internal stores kinetics. This proof suggests likely candidates for
optimal control regimes in the case of a more realistic model. These candidate regimes differ
with respect to the information that the cell’s control system must have access to. We pay
particular attention to one of the three candidates, a feedback regime based on a cellular con-
trol system that monitors only internal reserve densities. We show that allocation converges
rapidly to balanced growth under this control regime.

1. Introduction

Microbes assimilate abiotic nutrients, and from these nutrients they derive building
blocks which they use to grow more of themselves [15]. As they grow, the microbes
distribute the building blocks among various types of macromolecular structures.
They thus naturally face an allocation problem. We will consider a particular sub-
problem, confining ourselves to the molecular machinery involved in the uptake
and processing of the various nutrients. Elsewhere we have studied a different allo-
cation subproblem, concerning the choice between growth machinery and uptake
machinery [5].

While allocation determines the rates at which nutrients enter the microbial cell,
nutrient accumulation may be used by the cell to determine the allocation regime,
as we will show in this paper. There is thus an interesting reciprocal interaction
between the uptake and the processing of nutrients.

To simplify the mathematical analysis as much as possible, we assume that
there are only two chemical elements that make up a microbial cell: carbon and
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nitrogen. Furthermore, we assume that the cell can synthesise only two types of
uptake machinery: one that assimilates a nutrient from which the cell derives carbon
(and only carbon), and one that assimilates a nutrient that donates nitrogen only. In
making these assumptions, we drastically simplify the actual situation. However,
we are confident that we retain the essential features of the problem; see [4] for
a treatment of more realistic cases. The allocation problem is to distribute build-
ing blocks between the carbon nutrient assimilating machinery and the nitrogen
nutrient assimilating machinery.

We assume that fixed proportions of carbon and nitrogen are required to synthe-
size structural biomass, which includes catalytic machinery. (‘Structural biomass’
is biomass excluding reserves [8,11,13].) We also assume that the cell turns as
much of its nutrient supply into structural biomass as it possibly can (in [3] this
assumption is discussed and related to other classic growth models). The cell will
then (i) use up all of its carbon and nitrogen to synthesize such machinery (‘bal-
anced case’); or (ii) have some carbon reserves left over (‘nitrogen-limited case’);
or (iii) have some nitrogen reserves left over (‘carbon-limited case’). Our working
hypothesis is that the cell strives to achieve the balanced case (i). It is intuitively
obvious that the cell maximizes its growth rate when case (i) applies. It is less clear,
however, how a cell should behave if it is either nitrogen- or carbon-limited, and
acts so as to maximize its biomass over a given amount of time. The aim of this
paper is to discover such optimal behaviour.

In section 2, we develop a simple model for microbial growth and surplus kinet-
ics. Section 3 presents a full solution to the optimal control problem. The model is
extended in section 4, and likely candidates for (near) optimal control are studied.

2. Formulating the model

A microbial cell incorporates its supply of amino acids into various proteins. A
subset of these proteins is involved in the assimilation of nutrients. These proteins
are transporters that translocate nutrient molecules from the cell’s ambient into
the cell’s interior, as well as cytosolic enzymes that convert the nutrients into the
metabolites that feed the catabolic and anabolic pathways of the cell’s metabolism.
We will refer to the assembly of proteins required to assimilate a nutrient as the
nutrient’s ‘uptake system’. We enquire how a microbe should allocate its amino
acids among the various uptake systems that correspond to the various essential
nutrients required by the organism.

An intuitive answer to the question of optimal allocation is sketched in Figure 1.
When the availability of one of the nutrients drops, the transport system for that
nutrient is only able to sustain a reduced assimilation of the nutrient. This distorts
the stoichiometry of uptake, and a surplus of the other nutrient arises. However, by
having more transporters for the reduced-availability nutrient, the original stoichi-
ometry of uptake can be restored. Since the per capita quantity of uptake systems
is naturally constrained, the cell must have less of the transporters for the nutrient
that is still in relative abundance. The combination of required uptake stoichiom-
etry and environmental nutrient availabilities defines an allocation of molecular
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Fig. 1. The principle of adaptive re-allocation. To illustrate the principle, it is assumed
that the cell requires the same numbers of nitrogen and carbon nutrient molecules per unit
of time. Panels schematically depict a microbial cell surrounded by a medium containing
the nitrogen and carbon nutrients. Equal numbers of transporters conduct nutrient fluxes at
the required 1 : 1 ratio when both nutrients are present at saturating concentrations (top
panel). The 1 : 1 ratio can also be attained under low carbon conditions (bottom left panel)
and under low nitrogen conditions (bottom right panel) by investing more building blocks
in carbon or nitrogen transporters, respectively.

building blocks among the uptake systems. We now cast these intuitions in a more
precise form.

Let QC denote the cell’s carbon quota, that is the total quantity of carbon atoms
in the cell over all types of molecules, including constitutive as well as reserve
structures, as defined by [8]. Likewise, let QN denote the nitrogen quota. A certain
amount of catalytic proteins, proportional to QC , could be synthesised from the
carbon quota if the nitrogen quota were infinitely large. Taking the number of car-
bon atoms per weight unit of protein to be a constant, we can express the quantity
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of proteins which the carbon quota allows to be synthesized in terms of the number
of carbon atoms present in these proteins (C-moles). The quota QC then directly
represents a potential amount of catalytic machinery in C-moles. Similarly, if ρC:N
is the ratio of carbon to nitrogen atoms in protein, ρC:NQN represents a C-molar
amount of catalytic machinery allowed by the nitrogen quota. Since both carbon
and nitrogen atoms are required to synthesize protein, the actual C-molar amount
of catalytic machinery is the minimum of the two:

Qcata = min{QC, ρC:NQN } . (1)

We will assume that a fixed proportion α ∈ (0, 1) of the catalytic machinery is de-
voted to uptake systems, and that of these, a variable fraction y ∈ (0, 1) is devoted
to the uptake of carbon, and the remainder (1 − y) to the uptake of nitrogen. Thus,
the C-molar amount of carbon uptake machinery is yαQcata. The variable y plays
a central role in this paper: it represents the allocation between carbon and nitrogen
uptake systems.

A fixed fraction (1 − α) is allocated to catalytic machinery other than that di-
rectly involved in assimilation. This machinery is involved in turn-over as well as
growth. We assume that the allocation (1 − α) provides under all circumstances
sufficient catalytic capability to convert building blocks into catalytic machinery
at the rate permitted by the minimum consideration which underlies equation (1).
This assumption simplifies matters: in reality, under low growth conditions, the or-
ganism might lower α and invest more building blocks in uptake and less in growth;
we have considered the uptake/growth trade-off elsewhere [5].

On the above assumptions, the quotas obey the following kinetics:

Q̇C = fCβCyαQcata (2)

Q̇N = fNβN(1 − y)αQcata (3)

where fC, fN are dimensionless saturation factors, and βC, βN are uptake rate
parameters.

The saturation factors express to what degree the uptake systems are saturated.
A classic example of a model for the saturation factor is the Michaelis-Menten
equation [14]:

fC = SC

KC + SC

where SC is the environmental concentration of the carbon nutrient, and KC is a
saturation parameter. Here we need not concern ourselves with the choice of a good
model to link environmental conditions to the saturation factors: we simply treat
fC, fN as the effective representations of these conditions.

The rate parameters βC, βN translate the C-molar amounts of catalytic machin-
ery into carbon (nitrogen) fluxes that would result if the uptake systems were fully
saturated (that is, at fC = 1, fN = 1). These rate parameters subsume various con-
version coefficients: the investment costs (amino acids per transporter), the nutrient
flux rate that can be sustained by a transporter, and the yield of carbon (nitrogen)
atoms from each nutrient molecule.
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The following definitions help to simplify the kinetics:

ω1
def= fCαβC

fCαβC + fNαβNρC:N

ω2
def= fNαβNρC:N

fCαβC + fNαβNρC:N

x1
def= αQC (4)

x2
def= αρC:NQN

ϕ
def= min{x1, x2}

t ′ def= (fCαβC + fNαβNρC:N) t

The quantity ϕ is the amount of uptake systems in C-moles. Since α is fixed, ϕ is
a valid numéraire of structural biomass, and the ratio ϕ̇/ϕ represents the relative
growth rate of the microbial cell. The dimensionless coefficients ω1, ω2 are both
contained in (0, 1) and add to 1. Environmental conditions are thus entirely repre-
sented by ω1 (or, equivalently, ω2). Scaled time is denoted by t ′ here; we will omit
the prime in what follows. On this scaling equations (2) and (3) become:

ẋ1 = ω1yϕ (5)

ẋ2 = ω2(1 − y)ϕ (6)

Our objective now is to find a control of allocation y that will maximize struc-
tural biomass ϕ(t) for all t > 0. We can formulate this as a problem to maximize
ϕ(T ) for some fixed value of T . This is equivalent to the problem of maximizing
structural biomass for all t provided that the solutions are independent of T , which
happens to be true of all results presented below.

The condition x1 = x2 implies that none of the carbon or nitrogen atoms are
tied up in reserves (i.e. surplus structures that do not serve as catalytic machinery
or structural elements such as the cell envelope). The situation where dx2/dx1 = 1
is known in microbiology as ‘balanced growth’ [15]. When x1 < x2, growth is
limited by carbon, and when x1 > x2, growth is limited by nitrogen. It will be
convenient to denote the corresponding partitioning of the x1, x2 phase plane as
follows:

I1
def= {x = (x1, x2) ∈ R2 : 0 < x1 < x2}

I2
def= {x = (x1, x2) ∈ R2 : 0 < x2 < x1} (7)

I12
def= {x = (x1, x2) ∈ R2 : 0 < x1 = x2} .

3. Instantaneous adaptation of allocation

In this section we assume that the cell is able to alter the allocation y instantaneous-
ly. Physiologically, this means that there are mechanisms to retract, say, a carbon
nutrient transporter from the cell envelope, and replace it by a nitrogen nutrient
transporter. Moreover, the turn-over of such machinery must be more rapid than
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the time scale of our model (which is ∼ ϕ/ϕ̇). These assumptions may be warranted
in the case of eukaryotic cells, but are not likely to be satisfied by bacteria [6,15].
In section 4 we consider an alternative which is more realistic for prokaryotic cells.
However, the results of the present section will still prove to be relevant.

The variable y is taken to be the control parameter, y ≡ v. We can state the
optimal control problem as follows:



ẋ1 = ω1vϕ(x) 0 < ω1 < 1
ẋ2 = ω2(1 − v)ϕ(x) 0 < ω2 < 1
x1(0) = x10 > 0
x2(0) = x20 > 0
T > 0 is fixed
x(T ) is free
v(t) ∈ [0, 1] ∀t ∈ [0, T ]
ϕ(x(T )) → max

v(·)

. (8)

If the system moves along the diagonal I12, we have x1 = x2, and no carbon
or nitrogen surpluses are built up. This suggests a control regime that moves the
system as quickly as possible to the diagonal, and subsequently ensures that it re-
mains on the diagonal, to be optimal. This intuition is confirmed by the following
theorem.

Theorem 1. The unique optimal control function vop(t) in problem (8) is defined
by

vop(t) =


v1(t) if x1(0) < x2(0)
ω2 if x1(0) = x2(0)
v2(t) if x1(0) > x2(0)

(9)

or in feedback form

vop(x) =



1 if x1 < x2
ω2 if x1 = x2
0 if x1 > x2

(10)

where

v1(t) =
{

1 0 ≤ t ≤ T�
ω2 T� < t ≤ T

v2(t) =
{

0 0 ≤ t ≤ T�
ω2 T� < t ≤ T

T� = max

{
1

ω1
ln

x2(0)

x1(0)
; 1

ω2
ln

x1(0)

x2(0)

}
.

Lemma 3 and Lemma 4 below imply the prescription of the control regime
given by this theorem, as well as its uniqueness. Existence can be established as
follows.

Lemma 1. The optimal solution to problem (8) exists.
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Proof. We shall consider measurable functions as admissible control functions in
problem (8) and establish the result for this case. Writing the above dynamics in
the form ẋ = F(x, v) we can see that the system has the following properties:
(i) ||F(x, v)|| ≤ √

2 ||x|| ∀v ∈ [0, 1]; and (ii) the set G(x) = {g ∈ R2 : g =
F(x, v), v ∈ [0, 1]} is convex for all x ∈ R2+. These properties imply that the
controlled system satisfies all conditions of Filippov’s Theorem [7,9] which tells
us that the attainability set of (8) is a closed bounded set in two-dimensional space
(i.e. it is a compact set). This fact, together with the continuity of the function ϕ(x),
implies the existence of an optimal solution to (8). ��

As a preamble to Lemma 4, the following result establishes that there are no
‘short-cut trajectories’ through either region I1 or I2 compared to a trajectory along
the diagonal I12.

Lemma 2. Let x̃(t), x̄(t) be the phase trajectories of system (8) responding to ad-
missible controls v(t) = ṽ(t) and v(t) = ω2, respectively, where t ∈ [τ1, τ2] and
x̃(τ1) = x̄(τ1) ∈ I12. If either x̃(t) ∈ I1 or x̃(t) ∈ I2 for all t ∈ (τ1, τ2) then

ϕ(x̃(τ2)) < ϕ(x̄(τ2)) .

Proof. Let

τ1 = 0, τ2 = τ ; x̃1(0) = x̃2(0) = x̄1(0) = x̄2(0) = a

for the sake of simplicity and x̃(t) ∈ I1 ∀t ∈ (0, τ ) for definiteness. Clear-
ly ϕ(x̄(τ )) = aeω1ω2τ since x̄1(t) = x̄2(t) = aeω1ω2t , t ∈ [0, τ ]. If ṽ ≡ 1 for
t ∈ [τ1, τ2], we immediately have ϕ(x̃2(τ2)) = a < ϕ(x̄(τ2)), which is the required
result. Otherwise we have from x̃(t) ∈ I1 ⇔ x̃1(t) < x̃2(t)

˙̃x2 = ω2(1 − ṽ)x̃1 < ω2(1 − ṽ)x̃2

for at least some t ∈ (0, τ ), which implies, for t ∈ (0, τ ],

a exp

{
ω1

∫ t

0
ṽ(s)ds

}
= x̃1(t) ≤ x̃2(t) < a exp

{
ω2

∫ t

0
(1 − ṽ(s))ds

}
.

This means that

ω1

∫ t

0
ṽ(s)ds < ω2

∫ t

0
(1 − ṽ(s))ds = ω2t − ω2

∫ t

0
ṽ(s)ds , t ∈ (0, τ ]

or (as ω1 + ω2 = 1)
∫ t

0 ṽ(s)ds < ω2t . This inequality implies that ϕ(x̃(τ )) =
a exp

{
ω1

∫ τ

0 ṽ(s)ds
}

is strictly smaller than aeω1ω2τ = ϕ(x̄(τ )). ��
To prove the t ≤ T� part of Theorem 1, we need to show that optimality requires

moving the system as quickly as possible to the diagonal I12.

Lemma 3. Let x(0) ∈ I1 (or I2) and T ≤ T� where

T� = max

{
1

ω1
ln

x2(0)

x1(0)
; 1

ω2
ln

x1(0)

x2(0)

}
.

Then the control function v∗(t) = 1 (or 0), t ∈ [0, T ] provides an optimal control
regime for (8).
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Proof. Assume x(0) ∈ I1 for definiteness. Then T� = 1

ω1
ln

x20

x10
and for an arbi-

trary control function v(t) the system is described by{
ẋ1 = ω1vx1 x1(0) = x10
ẋ2 = ω2(1 − v)x1 x2(0) = x20

and x1(t) ≤ x2(t) ∀t ∈ [0, T ] (equality is possible only at t = T ). Thus ϕ(x(t)) =
x1(t) ∀t ∈ [0, T ]. The choice v(t) = 1 ∀t ∈ [0, T ] maximizes the rate at which x1
increases (x2 remaining equal to x20). Since, for this choice, x1(t) reaches x20
at t = T� and is smaller than x2(t) ≡ x20 for t < T�, we see that for T < T� the
choice v ≡ 1 is optimal. ��

Finally, for the t > T� part of Theorem 1, we establish the optimality of balanced
growth, that is, of staying on the diagonal I12 once the system is on it.

Lemma 4. If x(0) ∈ I12 the control v∗(t) = ω2, t ∈ [0, T ] is optimal in (8).

Proof. Lemma 1 guarantees the existence of an optimal control for (8). Assume
that ṽ(t), t ∈ [0, T ] is an optimal control. It defines an optimal trajectory x̃(t),
t ∈ [0, T ], x̃(0) = x(0). There are two possibilities for the trajectory x̃(t). We
may have x̃(t) ∈ I12 for all t ∈ [0, T ], in which case the result is trivial: from
x̃1(t) ≡ x̃2(t), ˙̃x1(t) ≡ ˙̃x2(t), t ∈ [0, T ] it follows directly that ṽ(t) = ω2 for
all t ∈ [0, T ]. Otherwise, we have x̃ ∈ I12 not for all t ∈ [0, T ]. But this is impos-
sible. Assume to the contrary that there is at least one time interval (τ1, τ2) ∈ [0, T ]
such that x̃(τ1) ∈ I12, x̃(t) /∈ I12 for all t ∈ (τ1, τ2). There are two subcases to
consider: either τ2 = T or τ2 < T with x̃(τ2) ∈ I12. If τ2 = T the required con-
tradiction follows from the fact that we can find a control which does better than
the postulated optimal ṽ; this alternative control is prescribed by

v(t) =
{
ṽ(t) t ∈ [0, τ1)

ω2 t ∈ [τ1, T ]

and its superiority to ṽ follows from Lemma 2. When τ2 < T we have the following
control, which allows, again by Lemma 2, the system to reach the state x̃(τ2) at a
strictly earlier time, say τ2 − δτ (with τ1 < τ2 − δτ < τ2):

v(t) =
{
ṽ(t) t ∈ [0, τ1)

ω2 t ≥ τ1
.

Using the autonomy of the system, we can now shift the behaviour of the system
under ṽ(t) for t ∈ [τ2, T ) backwards in time by an amount δτ , which means that the
final state under ṽ, which is x̃(T ), is reached at the earlier time T − δτ . Choosing
v = ω2 for the final segment [T −δτ, T ], we can formulate a control regime which
is superior to ṽ:

v(t) =



ṽ(t) t ∈ [0, τ1)

ω2 t ∈ [τ1, τ2 − δτ)

ṽ(t + δτ) t ∈ [τ2 − δτ, T − δτ)

ω2 t ∈ [T − δτ, T ]

but as ṽ was already optimal by hypothesis we have the desired contradiction. ��
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Theorem 1 proposes a mixed feedforward/feedback control, as the control sys-
tem requires knowledge of the internal state (x) as well as the external conditions
(ω2). One might suppose that a simpler set-up would perform nearly as well. For
instance, a pure feedforward system would set v ≡ ω2 for all t . In that case, the
trajectory x(t) has a slope equal to 1 everywhere, and the cells would not attain
the diagonal I12 unless x(0) ∈ I12. However, dx2/dx1 = 1 does imply balanced
growth in the sense that surplus densities, defined by

z1(x)
def= x1 − ϕ(x)

ϕ(x)
, z2(x)

def= x2 − ϕ(x)

ϕ(x)
(11)

converge to zero. For instance, if x(0) ∈ I1, growth is carbon-limited (ϕ ≡ x1,
z1 ≡ 0) and there is a nitrogen surplus. But since x2(t) = x1(t)+ (x2(0)− x1(0)),
the nitrogen surplus density z2 goes to zero as x1 → ∞.

Alternatively, one might consider a pure feedback control, which relies only on
knowledge of x. This requires a choice, say v = 1, to be made for v when x1 = x2
(we already have a feedback control for x1 �= x2). In the present model this results
in degenerate behaviour, a problem resolved in the case of the more realistic model
set up in the next section.

4. Adaptation of allocation by growth dilution

In section 3 we treated y as the control variable, where y ≡ v was the fraction
of uptake machinery devoted to the uptake of carbon. This assumption is warrant-
ed only if the cell is able to convert one type of uptake machinery into another,
and to do this sufficiently rapidly compared to the time-scale of growth. However,
prokaryotic microbes are probably not able to change machinery that is already in
place [6,15]. When such a cell alters its allocation of amino acids between carbon
and nitrogen nutrient transporters, this alteration can only affect the transporters
that are presently being formed. The change in allocation relies on dilution by
growth. We must therefore consider the kinetics of the allocation fraction y.

Let u ∈ [0, 1] denote the fraction of newly formed uptake protein devoted to
the uptake of carbon nutrient. We assume that cellular control mechanisms govern
the value of u. The quantity yϕ represents the C-molar quantity of uptake systems
devoted to carbon uptake. Its rate of change equals the rate at which uptake systems
are synthesised, multiplied by the allocation variable u:

d

dt
(yϕ) = uϕ̇

or, since d
dt
(yϕ) = ẏϕ + yϕ̇,

ẏ = (u − y)ϕ̇/ϕ . (12)
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The optimal control problem now becomes, with scaling as in (4):




ẋ1 = ω1yϕ(x) ω1 > 0
ẋ2 = ω2(1 − y)ϕ(x) ω2 > 0
ẏ = (u − y)ϕ̇/ϕ

x1(0) = x10 > 0
x2(0) = x20 > 0
0 < y(0) = y0 < 1
T > 0 is fixed
x(T ) is free
u(t) ∈ [0, 1] ∀t ∈ [0, T ]
ϕ(x(T )) → max

u(·)

. (13)

Before we begin investigating optimal control in this system, let us establish that
it makes sense to look for it.

Lemma 5. The optimal solution to problem (13) exists.

Proof. By Filippov’s Theorem [7,9] as in Lemma 1. ��

One special case can be dealt with immediately, in virtue of the results of sec-
tion 3. This is the case where x(0) ∈ I12 (x10 = x20) and y = ω2. Setting u ≡ ω2,
we obtain y(t) ≡ ω2, and x(t) remains on the diagonal I12 (growth is balanced).
By Lemma 4, this control regime is optimal.

This non-generic case points to the difficulty engendered by the dilution kinet-
ics (12) in the generic case, where generally y(t ′) �= ω2 on a moment t ′ where
x ∈ I12, which means that the actual allocation y among carbon and nitrogen
uptake forces the state x off the diagonal again (the trajectory traverses the diago-
nal). Moreover, since the instantaneous allocation u is naturally contained in [0, 1],
there are limitations to the time-course that can be imposed on y(t) (otherwise y(t)
could be forced to follow a prescribed time-course f (t) by u(t) = y(t)+f ′(t)ϕ/ϕ̇,
ϕ̇ �= 0). For this reason, the results of section 3 do not carry over to problem (13).
Nevertheless, we may use these results to identify likely candidates for a solution
to problem (13). From a biological point of view, finding an optimal solution is
not the overriding concern: a control regime must also be biologically plausible,
in particular, physiologically feasible. For this reason, our focus in this section is
on whether biologically plausible candidate regimes are well-behaved. We discuss
three such candidates, all inspired by the foregoing results.

4.1. Rapid transference to balanced growth

Lemma 3 suggests that the system should move to the diagonal I12 as quickly
as possible, and subsequently stay on it. This motivates an auxiliary time-optimal
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transference problem:


ẋ1 = ω1yϕ(x) 0 < ω1 < 1
ẋ2 = ω2(1 − y)ϕ(x) 0 < ω2 < 1
ẏ = (u − y)ϕ̇/ϕ

x1(0) = x10 > 0
x2(0) = x20 > 0
0 < y(0) = y0 < 1
u(t) ∈ [0, 1] ∀t ∈ [0, T ∗]
x1(T

∗) = x2(T
∗), y(T ∗) = ω2

T ∗ → min
u(·)

. (14)

where T ∗ is the moment when the system hits the diagonal I12 under the ‘special’
condition y = ω2. As we have just seen, the control u ≡ ω2 is then optimal from
T ∗ onwards. There is a control regime which achieves this transference in minimal
time:

Theorem 2. Time-optimal feedback control for problem (14) is defined by

u(x, y, ω2) =
{

0 x2 < K(y, ω2)x1
1 x2 > K(y, ω2)x1

(15)

where

K(y, ω2) =
{
(1 + (y−ω2)

2

2(1−ω2)ω2(1−y)
)−1 0 < y < ω2,

1 + (y−ω2)
2

2(1−ω2)ω2y
ω2 ≤ y < 1.

We omit the proof of this non-trivial result (see [1,12]). The diagonal I12 is
crossed at most once by the trajectory under the control regime prescribed by this
theorem. The control regime is of a mixed feedforward/feedback type: the alloca-
tion control system must integrate information from the outside (ambient nutrient
concentrations, here represented by ω2) and from the inside (the state (x1, x2, y))
in order to behave in the prescribed manner.

Optimal control results need not make sense from a biological point of view.
In [5] we discuss several potential difficulties; we now consider two of those,
concerning feasibility and plausibility, in more detail. Reflecting on these two ob-
jections, we are led to consider simpler prescriptions for allocation control.

One objection which naturally occurs to a biologist is to question the plausibil-
ity of the control proposed by Theorem 2 on the basis of the complicated algebraic
formulas involved in the control regime. However, the structural robustness of the
proposed input/output behaviour itself is what matters, rather than the complexity
of the algebra used to describe it. Structural robustness is relevant here inasmuch
as the proposed input/output behaviour of the control system is only a model ide-
alization, which means that slight variations about that behaviour should not affect
the overall behaviour of the model too much.

An essential requirement for physiological plausibility of any proposed control
regime is that the cell’s control systems be able to obtain the required information.
Is there a signalling mechanism which acts so as to convey the information re-
quired as input to the proposed control system? Information about ω2 involves the
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ability to gauge the ambient concentrations of nutrients. Signalling systems which
connect ambient concentrations to gene expression are well-documented [6,15].
Similarly, it is quite plausible that signals about the cell’s internal nutritional state
serve as inputs to allocation control. Below we will consider control regimes based
exclusively on ambient nutrient concentrations (ω2, section 4.2) or on nutritional
status (x, section 4.3). The control regime proposed in Theorem 2 also requires
information about the realized allocation y. This would require the intracellular
signalling/control pathways to somehow gauge the amounts of uptake machinery
devoted to carbon and nitrogen, respectively. Although not impossible in principle,
such signalling would seem to require simultaneous gauging of ambient concen-
trations and realized fluxes, as well as an exquisitely precise integration of these
two information flows. For this reason, we do not regard the control proposed by
Theorem 2 as a likely candidate from a physiological point of view.

4.2. Feedforward control

A simpler control regime would only monitor external conditions (i.e. ω2). Only

u = ω2 can satisfy the balanced growth requirement dx1/dx2
!=1. The following

result affirms the well-behavedness of this control regime.

Theorem 3. If u(t) ≡ ω2 and y(0) ∈ (0, 1), the solution of (13) for any initial
point x0 ∈ R2+ possesses the following property:

x2(t)

x1(t)
→ 1, t → +∞ .

Proof. For x ∈ I1, ϕ̇/ϕ = ω1y and thus ẏ = ω1y(ω2 − y), which gives the
unstable solution y(t) ≡ 0 for y0 = 0. For x ∈ I2, ϕ̇/ϕ = ω2(1 − y) and thus
ẏ = ω2(1 − y)(ω2 − y), which gives the unstable solution y(t) ≡ 1 for y0 = 1.
We therefore exclude the initial conditions y0 = 0, 1, because these leave either x1
or x2 at the initial value. We can furthermore exclude the initial condition y0 = ω2,
for which x2(t)− x1(t) is constant in time, which immediately implies the desired
result. Either ẏ or d

dt
(1 − y) is given by a logistic equation, whence

y(t) =



ω2

y(ϑ)eω(t−ϑ)

ω2 + y(ϑ)(eω(t−ϑ) − 1)
x(s) ∈ I1, ϑ ≤ s < t

1 − ω1
(1 − y(ϑ))eω(t−ϑ)

ω1 + (1 − y(ϑ))(eω(t−ϑ) − 1)
x(s) ∈ I2, ϑ ≤ s < t

(16)

where ω = ω1ω2. We will give the proof for x(0) ∈ I1 (the cases x(0) ∈ I2 and
x(0) ∈ I12 can be dealt with in a similar manner). Let y0 ∈ (0, ω2), and consider the
ratio x2/x1. It is described by a linear differential equation with time-varying co-
efficients containing y, for which we can substitute the first of the above solutions.
The solution is

x2(t)

x1(t)
= 1 + 1 + C

eωt + C

[
x20

x10
− 1

]
+ Cω2t

eωt + C
(17)
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where C = (ω2 −y0)/y0. Since C > 0, we see that x(t) ∈ I1 for all t ≥ 0, and thus
the use of the first solution for y(t) is warranted. Also, it is clear that x2(t)/x1(t) →
1 as t → ∞. When y0 ∈ (ω2, 1), the trajectory crosses the diagonal I12 at some

time t�. We can compute this time t� by considering g(t)
def=x2(t)− x1(t). It is easy

to show that g̈(t) ≡ 0, and therefore g(t) = g(0) + ġ(0)t . Since g(t�) = 0, we
have

t∗ = −g(0)

ġ(0)
≡ x20 − x10

x10(y0 − ω2)
> 0 .

Furthermore, at t = t� the slope of the trajectory dx2/dx1 is smaller than 1 since

dx2

dx1

∣∣∣∣
t=t�

= ω2(1 − y(t∗))
ω1y(t∗)

and y(t∗) ∈ (ω2, 1) .

Therefore the phase point enters I2. For t > t�, the situation is symmetric to the
previous case, under the exchanges x1 ↔ x2, y ↔ (1 − y), and ω1 ↔ ω2. We thus
find x1(t)/x2(t) → 1 as t → ∞. ��

Feedforward control u ≡ ω2 requires that the allocation control system can
monitor the ambient conditions, in particular, can assess the degree to which the
uptake apparatus is saturated. Molecular signalling pathways which are able to
achieve this might exist, but even then it is difficult to see how such a system could
be well-calibrated. Moreover, feedforward control systems are intrinsically more
vulnerable to noise acting on internal dynamics, while feedback systems are more
robust in this respect. We therefore turn to a simple feedback system.

4.3. Feedback control

The third candidate we will consider is the feedback regime proposed by Theo-
rem 1. The special case x ∈ I12 with y = ω2 is not generic, and, as we shall see, is
never attained unless it happens to be the initial condition. We therefore disregard
this nongeneric case and consider the following control

u(x) =
{

0 x2 < x1
1 x2 > x1

(18)

which nearly coincides with the time-optimal feedback control specified by The-
orem 2. In particular, since K(y, ω2) = 1 + O((y − ω2)

2), the two controls are
nearly equivalent when y is near ω2, and regime (18) in fact brings y close to ω2
(see Lemma 9 below for a more precise statement).

In physiological terms, the simple feedback control regime defined by (18)
relies only on the system being able to gauge which nutrient is in surplus. Else-
where [4] we discuss a plausible mechanism which is able to do this. Briefly, all
that is required are small signalling molecules, a unique one for each type of in-
ternal store, such that the concentration of each is proportional to the density of its
corresponding store. Appropriate interaction of such signalling molecules with the
upstream activating sequences of the genes for uptake systems provides a molecular
basis for the feedback control system described here.
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Fig. 2. Behaviour of the feedback model. Simulation showing the main features of the feed-
back controlled model. ω1 = 0.4, y(0) = 0.1, x1(0) = x2(0) = 1. Left panel: allocation y
converging to ω2. Middle panel: structural biomass ϕ converging quickly to exponential
growth with relative rate ω1ω2. A ‘lag’ phase is apparent. Right panel: alternating surpluse
densities of carbon (solid line) and nitrogen (dashed line). The excursions of the densities
tend to zero.

Under control regime (18) the allocation y(t) oscillates around ω2 with di-
minishing amplitude (Figure 2, left panel). Structural biomass ϕ quickly settles on
exponential growth (Figure 2, middle panel); it is interesting that only the first os-
cillation is clearly visible on a semi-logarithmic plot such as this one, pointing to a
possible mechanistic basis for the well-known ‘lag phase’ [15]. The trajectory x(t)

winds around the diagonal (Figure 3), with the points of crossing the diagonal mov-
ing arbitrarily close together in time as t → ∞. The following result allows us to
focus on this winding behaviour.

Lemma 6. A trajectory starting at an arbitrary point x(ϑ) ∈ I1 or x(ϑ) ∈ I2
moves toward the diagonal I12 and intersects it at a slope dx2/dx1 �= 1.

Proof. By symmetry, we need only consider the case x(ϑ) ∈ I1. The allocation
fraction obeys a logistic equation ẏ = ω1y(1 − y) with solution

y(t) = y(ϑ)eω1(t−ϑ)

1 + y(ϑ)(eω1(t−ϑ) − 1)
x(s) ∈ I1, ϑ ≤ s < t (19)

which shows that y is strictly increasing from y(ϑ) to 1. As soon as y becomes
larger than ω2, the trajectory’s slope

dx2

dx1
= ω2

ω1

1 − y

y
x ∈ R2

+ (20)

becomes smaller than 1, and the trajectory moves toward the diagonal I12. As
ẋ1 > ω1y(ϑ)x(ϑ) > 0, the trajectory intersects I12 at a finite time, and as y > ω2,
the trajectory’s slope at that moment is smaller than 1. If y(ϑ) < ω2, the trajectory
will initially move away from I12, until y reaches ω2. The argument is analogous
for x(ϑ) ∈ I2; here y is strictly decreasing. ��

By the above lemma, we can restrict ourselves to a trajectory starting on I12
with slope dx2/dx1 �= 1 at t = τ0, winding itself around the diagonal, alternately
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Fig. 3. Trajectory of the feedback model. The state x alternately traverses regions I1

(carbon limitation) and I2 (nitrogen limitation); the diagonal is region I12. Indicated are the
slopes at the points where the diagonal is crossed, as well as the labelling of the times of
crossing.

traversing I1 and I2. Without loss of generality, we assume that the first arc travers-
es I1. We label the times of crossing from I2 to I1 as τ1, τ2, . . . and the times of
crossing from I1 to I2 as τ1/2, τ3/2, . . . (Figure 3).

From a biological point of view, the single most important aspect of the sys-
tem’s behaviour is that maximum excursions of the surplus ‘densities’ defined by
equations (11) approach zero as t → ∞. The behaviour of these surpluses is shown
in Figure 2, right panel: surpluses of carbon and nitrogen alternate. Thus the system
homes in on balanced growth.

Theorem 4. Feedback control (18) for problem (13) achieves balanced growth. In
particular, the following properties obtain:

(i)
lim
k→∞

τk = +∞

(ii)
lim
k→∞

(τk − τk−1) = 0

(iii)
lim
k→∞

max
t∈[τk−1,τk]

zi(x(t)) = 0, i = 1, 2



www.manaraa.com

Optimal allocation between uptake systems 291

(iv)
lim
k→∞

max
t∈[τk−1,τk]

y(t) = lim
k→∞

min
t∈[τk−1,τk]

y(t) = ω2 .

To establish these results, we begin by noting a key geometric property of the
trajectory x(t):

Lemma 7. Let γk
def= dx2

dx1

∣∣∣
t=τk

. The trajectory slopes γk at the points where the

trajectory crosses the diagonal I12 tend toward 1:

γ0 >
1

γ1/2
> γ1 >

1

γ3/2
> · · · > γk >

1

γk+1/2
> γk+1 > · · · > 1

with
lim
k→∞

γk = lim
k→∞

γk+1/2 = 1 .

Proof. By symmetry, we need only proof γk > 1/γk+1/2 to establish the chain of
inequalities. Thus, we consider a trajectory arc through I1 which starts on the diag-
onal I12 with slope dx2/dx1 = γk > 1. This arc is a segment of a curve described
by

x1(t) = x1(τk)
[
1 + y(τk) (exp{ω1(t − τk)} − 1)

]
(21)

x2(t) = x1(τk) [1 + ω2(1 − y(τk))(t − τk)] (22)

as is not difficult to derive from the dynamics equations (13), using the behaviour
of y(t), equation (19). From equations (19) and (20) we obtain a description of the
slope of the curve:

d

dt

(
dx2

dx1

)
= −ω1

dx2

dx1

or

dx2

dx1
= γk exp{−ω1(t − τk)} . (23)

From this last equation, we find that the slope dx2/dx1 equals 1/γk at time t� =
τk + (2/ω1) ln{γk}. Substituting t� in equations (21) and (22), we find

x2(t
�)

x1(t�)
= 1/y(τk) + 2γk ln{γk}

1/y(τk) + γ 2
k − 1

.

It is an elementary exercise to show from this that x2(t
�) < x1(t

�). But then we
must have

τk+1/2 < t� .

(recall that τk+1/2 denotes the time at which the arc reaches the diagonal I12). We
now use the monotony of the slope (equation (23)) to conclude that

γk+1/2 > 1/γk

or γk > 1/γk+1/2, which establishes the chain of inequalities.
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Let γ̄
def= limk→∞ γk . This limit exists as the sequence {γk} is monotonically

decreasing and bounded from below by 1. By the chain of inequalities which we
have just derived, γ̄ ≥ 1. To show that γ̄ = 1, we consider the relationship be-
tween γk to γk+1. Using equations (21)–(23) and symmetry, it can be shown that,
for all k, γk is carried into γk+1 by the same continuous function F : R+ �→ R+;
(i.e. γk+1 = F(γk), k = 0, 1, 2, . . . ). By the continuity of F we have

γ̄ = lim
k→∞

γk+1 = lim
k→∞

F(γk) = F( lim
k→∞

γk) = F(γ̄ ) ,

which, together with the properties F(1) = 1 and F(x) < x for all x > 1,
implies γ̄ = 1. A similar argument establishes limk→∞ γk+1/2 = 1. ��

Lemma 7 helps to establish the next pair of results, which are biologically
significant as they establish convergence to balanced growth.

Lemma 8. The maximal excursions of the surplus densities z1 and z2 approach
zero as k → ∞:

lim
k→∞

max
t∈[τk,τk+1]

zi(x(t)) = 0, i = 1, 2.

Proof. By symmetry, we can restrict ourselves to a trajectory arc through I1. In this
case, z1(t) ≡ 0, t ∈ [τk, τk+1/2], and the relevant surplus is z2(t). The maximal
excursion of z2 occurs when the ratio x2/x1 is maximal, since z2 = x2/x1 − 1.
Denote the maximal excursion of x2/x1 during the interval [τk, τk+1/2] by ξk .
When x2/x1 = ξk , the trajectory must have the same slope as the line x2 =
ξkx1 through the origin. But by equation (23) the trajectory’s slope monotonical-
ly decreases from γk to γk+1/2, and therefore ξk ∈ [γk+1/2, γk]. By Lemma 7,
limk→∞ γk = limk→∞ γk+1/2 = 1, and thus limk→∞ ξk = 1. The result follows
since maxt∈[τk,τk+1] z2(x(t)) = ξk − 1. ��
Lemma 9. The maximal excursions of the allocation fraction y from ω2 approach
zero as k → ∞.

Proof. From equation (19) and symmetry we see that y deviates most from the
‘singular’ value ω2 at the diagonal crossing times t = τi/2, i = 0, 1, 2, . . . (that is,
extremata of |ω2 − y(t)| occur at these times). Equation (20) implies

y(τk) = ω2

ω1γk + ω2

and since limk→∞ γk = 1 by Lemma 7, we have limk→∞ y(τk) = ω2. By symme-
try, the same obtains for y(τk+1/2), τ = 0, 1, 2, . . . . ��

We have now proved statements (iii) and (iv) in Theorem 4. Statement (ii) is
easy to establish:

Lemma 10. The frequency of switching between u ≡ 1 and u ≡ 0 diverges, that
is, limk→∞(τk − τk−1) = 0.
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Proof. By symmetry, we need only consider a trajectory arc through region I1.
From equation (23) we find the time needed to transverse the arc:

τk+1/2 − τk = (
ln{γk} − ln{γk+1/2}

)
/ω1 .

Taking k to infinity, and making use of Lemma 7, we find that the time taken to
traverse the arc goes to zero. ��

We have not yet discussed τ̄
def= limk→∞ τk . In principle, the situation where

τ̄ < ∞ might arise; in that case, for t > τ̄ x1(t) ≡ x2(t), y ≡ ω2. However, such
behaviour is not found for the present system.

Lemma 11. The sum of times between switching diverges: limk→∞ τk = +∞.

Proof. We need to show that the series

∞∑
k=0

(τk+1 − τk)

diverges. Using equation (23), as well as its analogue in I2, we can bound the
summand in this series as follows:

τk+1 − τk ≥ ω2
(
τk+1 − τk+1/2

) + ω1
(
τk+1/2 − τk

)
= ln{γk} − ln{γk+1} > ln{γk} . (24)

It may be shown that ln{γk} = O(1/k) from careful consideration of the properties
of F , which establishes the divergence of the series. ��

In fact, the question of τ̄ being finite or not is largely irrelevant from a biological
point of view, because the idealizations implicit in the model break down in either
case. After all, it is not plausible that the allocation regime u be ‘all-or-none’ when
x1 and x2 are nearly identical, as the cell’s control system can gauge |x2 − x1| only
within some margin of error (moreover, the dynamics of the cell’s actual control
system cannot support switching at an infinite rate). Thus, for states near I12, we
would expect a physiologically more realistic model to have no ‘hard’ switching but
a gradual dependence on the surplus densities. Regime (18) represents essentially
a limiting case of any model along these lines, for instance the one outlined in [4].

5. Discussion

We have established a rationale for allocating building blocks to uptake machinery
of those nutrients that are in short supply. It is natural to ask whether microbes
actually behave in this way. The allocation strategy proposed here generally con-
curs with known feedback mechanisms [6,15], but to our knowledge there has been
no systematic research into the relative levels of mRNA transcription for various
uptake systems in relation to both environmental conditions and internal storages.
Such a project is technically quite challenging, since a considerable number of
quantities need to be measured at the same time in the same organism.

Even if individual organisms do not possess control systems that alter allocation
according to environmental conditions, a similar process of adaptation might still
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occur on an evolutionary time scale. Slight mutations in, for instance, the upstream
regulatory sequences of uptake system genes will lead to variations in allocation,
and the mutant that achieves a higher growth rate will be favoured.

Our analysis has been limited to time-constant ambient conditions, which allow
exponential growth, as in Figure 2. An obvious further step would be to explore
ambient conditions which vary with time. We expect that the basic result, Theo-
rem 1, would still obtain. Our heuristic reason for expecting this is that the value
of T is essentially immaterial to this result, since it allows a feedback formulation.
Therefore the result holds good for time-varying conditions made up by piece-wise
constant functions. Thus it seems reasonable to expect that the result will still hold
for continuously time-varying f∗. The scaling t �→ t ′ then becomes a continuous
distortion of the time-axis, but this would not seem to pose a serious problem.

Extension of the results to time-varying conditions would allow us to motivate
adaptive re-allocation not only under conditions conducive to exponential growth,
but also under those of batch growth and transients in the chemostat. In a batch
culture, the growing colony depletes the limited stock of available nutrients. During
chemostat transients, ambient conditions and biomass density approach an equi-
librium where the former allow the cells to grow exponentially at the dilution rate
of the plant. In actual ecosystems, the kinetics of the ambient conditions not only
depend on the activities of the biota under consideration (depletion of the medium)
but on various external influences as well, such as changes in the supply to the eco-
system, and the activities (production as well as consumption) of other organisms
present in the ecosystem. However, the precise mechanisms underlying the ambient
fluctuations are typically irrelevant to the problem at hand, which is, in essence,
whether striving toward the allocation y = ω2 allows the organism to outgrow
its competitors. Thus the extension envisaged is to time-varying conditions per se,
regardless of what dictates the kinetics of those conditions. From the point of view
of the individual cells, the chemostat culture at steady state, is no different from
the exponential growth phase in a batch culture, and thus it remains true that the
relative growth rate is maximized for the allocation y = ω2.

In our treatment, we ignored a number of biological complications. For instance,
nutrients may not be broken down to single elements, but rather to chemical groups
(ranging from simple groups, such as –NH3, to complex carbon bodies [6]). This
makes no difference to the mathematical analysis. Also nutrients may yield more
than one such group; this problem is taken up elsewhere [4]. Of course, there are
more than two essential elements in reality. A generalization of the present results
is straightforward, however. The ‘singular’ allocation for which all surpluses are
zero can readily be derived (cf. [4]). As for the feedback control regime, observe
that there is generically only one reserve type not in surplus (the ‘limiting’ reserve,
see [3]). Allocation of the building blocks to the uptake system associated with the
limiting nutrient generalizes the regime investigated in the present paper.

We have also ignored additional modulation of the activity of uptake sys-
tems. This is another, quick-acting, way in which organisms can limit the increase
of surplus densities without re-allocation. For instance, a nitrogen surplus might
induce the phosphorylation of the catalytic molecules in the nitrogen uptake sys-
tem, rendering them inactive [15]. The effect of such a mechanism would be to
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keep surpluses in check, and thus limit the variations in carbon:nitrogen ratios. As
long as this modulation allows surplus to accumulate to some (moderate) extent,
the feedback control proposed in section 4.3 can still have access to the information
it requires. Thus the proposed feedback control can still effect re-allocation in the
presence of such additional modulation.

Another important aspect of microbial physiology which has been ignored in
this paper is the expenditure of reserves on turn-over and the maintenance of struc-
tural integrity. Taking this process into account, we would have to add a loss term
to the quota kinetics (for instance that of carbon):

Q̇C = fCβCyαQcata − mCQcata

where mC is a maintenance rate coefficient. Replacing the saturation factor fC

by an effective factor f̃C
def=fC − mC/(βCyα), we recover the model as analysed

above. This move to f̃C is merely a technical maneuver. In particular, it does not
mean that we commit ourselves to a ‘demand-driven’ rather than a ‘supply-driven’
model. (The demand/supply distinction is essentially moot in the present approach,
which combines straightforward bookkeeping with specification of cellular control
of the so-called ‘active’ fluxes. As shown in [2], depending on how this control is
specified, one can recover models traditionally thought of as ‘demand-driven’ as
well as ‘supply-driven’ models.)

Since f̃C depends on y, we need to establish the time-varying result, as dis-
cussed above. Moreover, as long as f̃C remains positive, this time-variability is the
only difficulty to contend with. We do not know whether the optimality result still
holds when f̃C becomes negative. Even then, it still makes intuitive sense to condi-
tion allocation on the lowest surplus, even when that surplus is negative. However,
such re-allocation will not be able to restore a positive flux if the carbon nutrient
concentration is too low (when fC ≤ mC/(βCα), to be precise). In such cases,
we must discard our working hypothesis that the cell strives to achieve balanced
growth. To allow for nitrogen wastage in endogenous metabolism, a maintenance
term −mNQcata may be added to the kinetics of the nitrogen quota QN . The factor
fN is then replaced by an effective factor f̃N ; this does not introduce any additional
difficulties.

Surpluses are essential in eco-physiological situations where organisms can
only survive such periods of famine if they accumulate sufficient reserves in ad-
vance. In those cases, growth-balancing re-allocation is not to be expected. On
the other hand, if periods of non-availability of carbon and nitrogen alternate on a
time scale which is sufficiently short, the cell might still utilize the control regimes
proposed in this paper. In that case, the transversals of I1 and I2 might follow
the periodic environmental fluctuations. Paradoxically, such an organism would
always be synthesising the uptake system for the nutrient that is presently unavail-
able. It is intriguing that such paradoxical behaviour is actually observed in some
phototrophic bacteria [10] (in a phototroph the availability of the carbon nutrient
is not only determined by the concentration of HCO−

3 but also by the level of
irradiance). Whether the feedback control (18) would still be (near) optimal in such
a situation remains an open question. The answer to this question might depend
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on the relative magnitudes of the time scales of the environmental alternations and
growth/re-allocation.
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